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A COMPARISON OF VIBRATION AND OIL DEBRIS GEAR DAMAGE
DETECTION METHODS APPLIED TO PITTING DAMAGE

Paula J. Dempsey
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Abstract: Helicopter Health Usage Monitoring Systems (HUMS) must provide reliable,
real-time performance monitoring of helicopter operating parameters to prevent damage of
flight critical components. Helicopter transmission diagnostics are an important part of a
helicopter HUMS. In order to improve the reliability of transmission diagnostics, many
researchers propose combining two technologies, vibration and oil monitoring, using data
fusion and intelligent systems. Some benefits of combining multiple sensors to make
decisions include improved detection capabilities and increased probability the event is
detected. However, if the sensors are inaccurate, or the features extracted from the sensors
are poor predictors of transmission health, integration of these sensors will decrease the
accuracy of damage prediction. For this reason, one must verify the individual integrity of
vibration and oil analysis methods prior to integrating the two technologies. This research
focuses on comparing the capability of two vibration algorithms, FM4 and NA4, and a
commercially available on-line oil debris monitor to detect pitting damage on spur gears in
the NASA Glenn Research Center Spur Gear Fatigue Test Rig. Results from this research
indicate that the rate of change of debris mass measured by the oil debris monitor is
comparable to the vibration algorithms in detecting gear pitting damage.

Keywords: Damage detection; Gears; Health monitoring; Oil debris monitor; Vibration

Introduction: Various techniques exist for diagnosing damage in helicopter transmissions.
The method most widely used involves monitoring vibration. Algorithms have been
developed using vibration data collected from gearbox accelerometers to detect when gear
damage has occurred. These vibration algorithms are then used for assessing gearbox
condition. Oil debris monitoring is also used to identify abnormal wear related conditions at
an early stage. Oil debris monitoring for gearboxes consists mainly of off-line oil analysis,
or plug type chip detectors. For off-line analysis, oil samples are collected, sent to labs and
analyzed for trends that indicate component failure. A plug type chip detector uses a magnet
that captures debris. The state of an indicator changes when the debris forms an electrical
bridge between the contacts. Although not commonly used for gearboxes, many engines have
on-line oil debris monitors that can count particles and determine the size and the accumu-
lated mass. And new intelligent oil monitors are currently being developed that have the
ability to identify major wear fault types [1].
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The goal of future HUMS is to increase reliability and decrease false alarms by replacing
simple one parameter limits with an integrated intelligent system. The current fault detection
rate of commercially available HUMS through vibration analysis is 60 percent. False
warning rates are average 1 per hundred flight hours [2]. Vibration based systems require
extensive interpretation by trained diagnosticians to create algorithms that indicate impeding
failures. Commercially available oil debris monitor systems require trending the data to set
limits to predict damage based on the number of particles or the accumulated mass.

Integrating the sensors into one system is the critical key to improving the detection
capabilities and the probability that damage is detected [3]. Comparing the performance of
vibration and oil based measurement techniques is the first step required prior to fusing the
methods into a reliable health monitoring system.

The objective of the work reported herein is to evaluate and compare the performance of
vibration and oil debris monitoring based techniques in detecting gear pitting damage.
Experimental data from controlled tests on a spur gear fatigue test rig are used to compare
the relative performance of these methods.

Apparatus and Test Procedure: Experimental data was recorded from tests performed in
the Spur Gear Fatigue Test Rig at NASA Glenn Research Center [4]. Figure 1 shows the test
apparatus in the facility. Operating on a four square principle, the shafts are coupled together
with torque applied by a hydraulic loading mechanism that twists one coupling flange with
respect to the other. The power required to drive the system is only enough to overcome
friction losses in the system [5]. The test gears are standard spur gears having 28 teeth,
3.50 inch pitch diameter, and .25 inch face width. The test gears are run offset to provide a
narrow effective face width to maximize gear contact stress while maintaining an acceptable
bending stress.

Fatigue tests were run in a manner that allows damage to be correlated to the vibration and
oil debris monitor data. For these tests, run speed was 10,000 RPM and applied torque was
71 ft-lbs. Prior to collecting test data, the gears were run for 1 hour at a torque of 10 ft-lbs.
Test gears were inspected periodically for damage throughout the duration of the test. When
visual damage was found, the damage was documented and correlated to the test data.

Data was collected using vibration, oil debris, speed and pressure sensors installed on the test rig.
Vibration was measured on the gear housing and through the shaft using miniature, lightweight,
piezoelectric accelerometers.  Location of both sensors is shown in Figure 2. These locations were
chosen based on an analysis of optimum accelerometer locations for this test rig [6]. Oil debris data
was collected using a commercially available oil debris sensor that measures the change in a
magnetic field caused by passage of a metal particle where the amplitude of the sensor output
signal is proportional to the particle mass. The sensor measures the number of particles, their
approximate size (125 to 1000 microns) and calculates an accumulated mass [7]. Shaft speed was
measured by an optical sensor that creates a pulse signal for each revolution of the shaft. Load
pressure was measured using a capacitance pressure transducer.
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Oil debris monitor, speed, pressure, and raw vibration data was collected and processed in
real-time using the program ALBERT, Ames-Lewis Basic Experimentation in Real Time,
co-developed by NASA Glenn and NASA Ames. Oil debris and pressure data was recorded
once per minute. Vibration and speed data was sampled at 200 KHz for one-second duration
every minute. Vibration algorithms FM4 and NA4 were calculated from this data and
recorded every minute.

Vibration Diagnostic Parameters: Two vibration diagnostic parameters were used in this
analysis, FM4 and NA4. FM4 was developed to detect changes in the vibration pattern
resulting from damage on a limited number of teeth [8]. NA4 was developed to detect the
onset of damage and to continue to react to the damage as it spreads [9]. FM4 and NA4 are
dimensionless parameters with nominal values of approximately 3. When gear damage
occurs, the value increases for both FM4 and NA4. Prior to calculating FM4 and NA4, the
time synchronous average of the vibration data is calculated. Signal time synchronous
averaging is a technique used to extract periodic waveforms from additive noise by averaging
the vibration signal over one revolution of the shaft. The signal time synchronous average is
obtained by taking the average of the signal in the time domain with each record starting at
the same point in the cycle as determined by the once per rev signal. The desired signal, which
is synchronous with the shaft speed, will intensify relative to the non-periodic signals. This
time synchronous average signal is used as a basis for FM4 and NA4 methods.

Several statistical and filtering operations are used to calculate FM4. First the regular
meshing components are filtered from the signal resulting in a difference signal. The regular
meshing components are the shaft and meshing frequencies their harmonics and first order
sidebands. Two statistical operations, standard deviation and kurtosis, are then performed on
the filtered signal. Kurtosis is the function that quantifies how “Gaussian” a time history is,

Figure 1.—Spur Gear Fatigue Test Rig.

Housing

Shaft

Figure 2.—Accelerometer locations on
   Spur Gear Fatigue Test Rig (gearbox
   cover removed).
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and is defined as the fourth moment of a probability density function [10]. FM4 is calculated

as follows:
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The NA4 parameter is calculated in a similar manner to FM4, with two alterations. The first

change involves retaining the first order sidebands when calculating the regular meshing

components of the difference signal. The second change is that while FM4 is calculated by

the kurtosis of a data record divided by the square of the variance of the same record, NA4

is divided by the square of the average variance. The average variance is the mean value of

the variance of all previous data records in the run ensemble [12].
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where

r = residual signal = shaft and meshing frequencies and their harmonics removed from FFT

of time synchronous averaged signal

r  = mean value of residual signal

N = total number of interpolated data points per reading

i = interpolated data point number per reading

M = current reading number

 j = reading number
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Discussion of Results: The analysis discussed in this section is based on data collected from
two gear tests that ended when pitting damage occurred. Figure 3 is a plot of the data measured
during testing of Gear Set 1. Vibration algorithms FM4, NA4, and the accumulated mass
measured by the oil debris monitor are plotted versus reading number. Readings were
recorded once per minute. This test collected 13716 readings over 228 hours. FM4 and NA4
were calculated for both the accelerometer located on the shaft and the accelerometer located
on the housing. During the 228 hours of testing, ten shutdowns occurred. To restart after
shutdown, the rig was brought up to speed, then the load was reapplied. These load changes
caused significant spikes in the NA4 plot that can be observed on Fig. 3 following shutdowns
at readings 1455, 2576, 3663, 3736, 3982, 4128, 4681, 5035, 5309, and 5435. The sensitivity
to load is due to the changes of the running average in the denominator of this algorithm.
Unfortunately, this change was due to a load change, not a damaged gear. The sensitivity of
NA4 to even minor changes in load has been documented in several research papers [13, 14].
Additional research is needed to correct for the sensitivity of NA4 to load. Another
observation to note on Fig. 3 is that after the shutdown at reading 4681, the oil debris monitor
indicated one 725 to 775 micron particle passed through the sensor, causing a large increase
in the accumulated mass. This one large chip was apparently flushed out of the line when the
rig was restarted after the shutdown.

Initial pitting appeared to occur at reading 11647. Initial pitting for the purpose of this paper
is defined as pits less than 1/64

 
inches in diameter with a depth less than 1/64

 
inches. At the

completion of the test, the gears were inspected for damage. Initial pitting was observed on
tooth 12 of both the driven and driver gears. By visual observation of the overall plot on
Fig. 3, all parameters showed a significant increase when pitting damage began to occur.
Figure 4 has an expanded Y scale in order to observe the increase in NA4 and FM4 as pitting
damage progressed. Reviewing Figs. 3 and 4, vibration algorithms FM4 and NA4 for both
accelerometers, and the accumulated mass increase significantly when pitting damage
occurs. Figure 5 shows a photo of the damage on the driver tooth at the completion of the test.

Figure 3.—Plot of vibration and oil debris monitor data for
   gear set 1.
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Figure 4.—Plot of vibration and oil debris monitor data for 
   gear set 1 (expanded scale).
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Figure 5.—Gear damage at completion
   of gear set 1 test.

Driver tooth 12 Driven tooth 12

During startup of the rig, chips generated during test setup pass through the sensor. And, as
mentioned previously, these chips may become trapped in the line, then flushed through the
sensor during restarts. Based on this data, and experience from gear tests where pitting
occurred or did not occur, a simple threshold limit on number of particles or accumulated
mass is not the best method to indicate damage. Instead, results from gear tests indicate that
the step change of the mass over the time from the last step change of the mass is a better limit.
An equation that describes this is shown below:

m m

t t
N N

N N

−
−

≥−

−

1

1
005. (5)

where
m = accumulated mass
t = time in minutes
N = reading number when step change in mass occurred
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Based on experimental data collected by the oil debris monitor during this experiment and
several experiments when no damage occurred, a value of .005mg/minute was calculated as
the limit to indicate pitting damage has occurred for this analysis.

Defining threshold limits for vibration algorithms to indicate when pitting damage has
occurred is a more challenging task. Several research papers defined 7 as threshold value to
indicate pitting damage for vibration parameter NA4. For parameter FM4, values for
initiation of pitting range from 3 to 5.4 [9, 15]. Three additional tests were run on the test rig,
which generated no damage on the test gears. The run hours ranged from 350 to 497 hours
for each test with a total of 1204 hours. The data recorded for FM4 during the tests when no
damage occurred was used to set a threshold limit for this algorithm. This was done by first
calculating the mean and standard deviation of FM4 during each test. Next, 3 times the
standard deviation was added to the mean [16]. Since the number of readings for each test
varied, a weighted average of the limit was calculated based on the number of readings
recorded during each test. The weighted average was used as the threshold limit for FM4.
From this exercise the limit for FM4 was set at 4.4503. Based on these threshold limits, FM4
and the oil debris monitor indicate pitting damage sooner than does NA4. NA4 had the most
false alarms for this test. This was mainly due to the sensitivity of NA4 to the load changes
that occurred during this test. Since several factors other than gear damage can cause
vibration levels to increase, future research is required to refine vibration algorithm limits to
minimize false alarms.

Figures 6 and 7 are plots of the data measured during testing of Gear Set 2. Vibration
algorithms FM4, NA4, and the accumulated mass measured by the oil debris monitor are
plotted versus reading number. Readings were recorded once per minute. During this test,
5314 readings were collected over 88 hours. FM4 and NA4 were calculated for both the
accelerometer located on the shaft and the accelerometer located on the housing. Initial
pitting appeared to occur at reading 5020. Gears were inspected at Reading 5181 and initial

Figure 6.—Plot of vibration and oil debris monitor data for
   gear set 2.
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Figure 8.—Gear damage at completion of gear set 2 test.
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Figure 7.—Plot of vibration and oil debris monitor data for 
   gear set 2 (expanded scale).
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pitting was observed on teeth 15 and 16 of the driver gear and teeth 15, 16, and 17 of the driven
gear. At the completion of the test, destructive pitting and spalling were observed on several
of the teeth. Destructive pitting is more severe than initial pitting and the pits are larger in size.
If the test continues, the pitting will get worse and the gear teeth may crack and break off. For
the purpose of this paper, damage is defined as destructive pitting if the depth is greater than
1/64

 
inches and the diameter is less than 1/16 inches. Spalling is similar to destructive pitting

but the pits are larger in diameter and cover a considerable area (greater than 50 percent of
tooth contact area). Damage is defined as spalling if the depth is greater than 1/64 inches and
the diameter is greater than 1/16 inches. The gears were inspected at the completion of the
test. From the inspection, initial pitting was observed on driver teeth 19, 24, and 27, and
driven tooth 14. A combination of initial and destructive pitting was observed on both the
driver and driven gears teeth numbers 9, 15, 16, 17, 18, and 24. Spalling was beginning to
occur on driver teeth 17 and 18. Figure 8 shows photos of the damaged teeth at test
completion.

Referring to Figs. 6 and 7, all parameters show a significant increase when pitting damage
occurs. A shutdown at reading 380 caused the large spike of NA4. Shutdowns also occurred
at readings 4903, 4919, 5128, and 5181. As shown on Fig. 7, after the shutdown at Reading
4919, FM4 and NA4 increased then decreased slightly. This increase/decrease is most likely
due to the load change. An integrated system that compensates for load changes will improve
the prognostic capability of the vibration algorithms.

Conclusions: The goal of this research was to compare the capability of vibration algorithms
FM4, NA4 and the oil debris monitor to detect gear pitting failure. This preliminary research
assessed the reliability of the individual parameters when detecting gear pitting. Improving
the reliability of the individual parameters must be done before attempting to integrate the
three parameters into an intelligent health monitoring methodology that can be applied to a
helicopter transmission system. Once improvements are made to the individual parameters,
the parameters can be combined to improve prediction of gear failure.

Results of this research indicate that several improvements need to be made to the parameters
to increase their individual performance. The first is the significant effect load changes have
on NA4. This algorithm must be modified to decrease its sensitivity to load changes. Future
research includes looking into a relationship between load and NA4 to improve the
performance of this algorithm. The second area that needs improvement is a method to set
alert and fault threshold limits for vibration algorithms. The third improvement requires the
oil debris monitor to differentiate existing chips trapped in the lubrication line, that are
flushed through the sensor during restarts, from chips due to actual pitting damage.

Based on the data collected, FM4, NA4, and the oil debris monitor each showed a significant
increase when pitting damage began to occur. Analytical techniques must be defined to
quantify damage thresholds, and to minimize the false alarms for the parameters. Once the
performance of each parameter is improved, the three parameters can be combined into an
intelligent system that can integrate the vibration and oil debris data, interpret the data, and
make an accurate decision based on the data.
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